hd极品free性xxx护士-中文字幕在线第一页-黄色三级av-国产高清视频在线播放-懂色av一区二区-制服诱惑一区二区-欧洲av一区-91精品国产欧美一区二区-卡通动漫精品一区二区三区-亚洲激情a-资源一区-日本护士取精xxxxxhd-神马午夜一二三区-国产精品一二二区-免费观看xnxxcom

歡迎光臨融恩備件之家,如需產品請致電

您現在的位置: 主頁 > 行業資訊 >

德國VSEVHM01-1流量計中國分公司

發布時間: 熱度:
德國VSEVHM01-1流量計中國分公司同時我們還經營:評定渦街流量計性能指標主要有4個參數:K系數、量程比、重復性和準確度等級。其中,K系數是指一個測量周期內,流量計輸出的脈沖數與流...
聯系方式

德國VSEVHM01-1流量計中國分公司同時我們還經營:  評定渦街流量計性能指標主要有4個參數:K系數、量程比、重復性和準確度等級。其中,K系數是指一個測量周期內,流量計輸出的脈沖數與流過流量計的相應流體總體積之比,每臺流量計都.有一個對應的平均K系數,一般都是通過實流標定得出的;量程比是指流量計可測最大流量值與最小流量值的比值;重復性是指在相同測量條件下,重復測量同一個被測量,測量儀器提供相近示值的能力;準確度等級是指符合一定的計量要求,使誤差保持在規定極限以內的測量儀器的等別或級別。   根據上述測試性能指標,對該方案研制的DN25mm、DN32mm和DN50mm共3種口徑的樣機一批共10臺進行測試,10臺樣機啟停質量法水流量標準裝置上全部通過0.5級合格檢定,特別是重復性指標,全部優于0.1%。其中一臺DN25mm口徑樣機的標定結果見表1,其量程比達15:I,最小流速測到0.28m/s,量程范圍明顯高于同口徑的各種容積式流量計,準確度等級高于渦街流量計等其他普通速度式流量計。   2014年,國內某核電站定制了一臺DN25mm口徑渦街流量計,用于計量含結晶和顆粒物的核廢液,經用戶現場標定其準確度等級達到0.4;另一化工企業用戶的一臺DN25mm口徑渦街流量計,用于計量150℃下的甲基鄰苯二銨有機液流量,介質粘度150mPa.s,用戶現場實.流標定其準確度等級達到0.5級。  熱式氣體質量流量計按結構可以分為熱分布型和浸入型。熱分布型熱式流量計將傳感元件放置于管道壁,傳感元件經過加熱溫度高于流休溫度,流體流經傳感元件表面導致上下游溫度發生變化,利用上下游溫度差測量流體流量,一般用于微小流速氣體流量的測量。   熱分布型熱式流最計的T.作原理如圖1所示,傳感元件由上游熱電阻、加熱器利下游熱電阻組成,加熱器位于管道中心,使得傳感元件溫度高于壞境溫度,上游熱電阻和下游熱電阻對稱分布于加熱器的兩側。圖1中曲線1所示為管道中沒有流休流過時傳感元件的溫度分布線.相對于加熱器的上下游熱電阻溫度是對稱的。當有流體經過熱式傳感元件時,溫度分布為曲線2,顯然流體將上游部分的熱量帶給下游,導致上游溫度比下游溫度低,上下游熱電阻的溫度差△T反映了流體的流量,即△T=f(m)。當流體流速過大時,上下游熱屯陰的溫度差△7趨向于0,因此熱分布型熱式氣體質量流量計用于測量低流速氣休微小流量。氣體質量流量qm可表示為 式中:Cp-一流體介質的定壓比熱容;A一熱傳導系數;K一一儀表系數。   浸入型熱式流最計的工作原理如圖2所示,一般將兩個熱電阻置于中大管道中心,可測量中高流速流體。熱電阻通較小電流或不通電流,溫度為T;另一熱電阻經較大電流加熱,其溫度T高于氣體溫度。管道中有氣流通過時,兩者之間的溫度差為△T=Tv-T0氣體質量流量qm與加熱電路功率P、溫度差△T的關系式為   式中:E一系數與流體介質物性參數有關;D一與流體流動有關的常數。   如果保持加熱電路功率P恒定,這種測量方法為恒功率法;如果保持溫度差△T恒定,這種測量方法為恒溫差法,兩種方法有各自的優缺點,使用時據具體環境和需要而定。目前較普遍的是采用恒溫差法,由于需要不同的應用領域,恒溫差法已不適用于某些場.合的測量,因此恒功率法應用領域越來越廣泛。恒溫差法的基本原理是流體流過加熱的熱電阻表面使得熱電阻表面的溫度降低,熱電阻的阻值變小。反饋電路自動進行處理,通過熱電阻的加熱電流變大從而使得熱電阻溫度升高,即可使得熱電阻與流體溫度差恒定。通過測量傳感電路的輸出電流或輸出電壓便可獲得流量值。恒功率法的基本原理是加熱功率為恒定值,管道內沒有流體流過時溫度差△7最大,當流體流過熱電阻表面時熱電阻與流體溫度差變小,通過測量△T便可得到流體流量。1.節能效果好  彎管流量計因其獨特的測量原理,沒有其他流量計必須具備的節流件或插入件,最大限度地減低了因計量檢測器具帶來的流體在管道內的壓力損失,減少了加壓設備的投入和加壓設備的電能消耗。由于孔板流量計是利用對流體節流裝置施行節.流產生的差壓來測量流體流量,流體在孔板上存在壓力損失,因此使用時為了保證孔板流量計的測量精度,在選定孔板流量計的工作壓差時都取高壓差值。通常情況下,該節流壓力損失(稱為不可恢復壓力損失)可達孔板運行流量下產生壓差值的30%~70% (與孔板的β值有關)。孔板流量計壓力損失等損耗量用見表1。2.設備使用狀況較好  冶金工業煤氣中,含有大量的粉塵、水、焦油和萘,使很多流量測量計量設備不能正常工作。彎管流量計的特殊結構和導壓管上的三通閥可在正常工作狀態下清除傳感器的堵塞附著物,實用便利,在現場試用4年來從未發生堵塞現象。3.彎管流量計結構簡單  彎管流量計的彎管傳感器,是一個90的標準彎管,內部沒有任何節流件和插入件,是測量元件中最為簡單實用的測量件。隨著機械加工業的快速發展和高精度數控機床用于機械加工業,彎管流量傳感器的加工精度不斷提高,質量越來越好。 彎管流量計的直管段要求前5D,后2D,孔板流量計的直管段要求前10D,后5D。彎管流量計的重復性好,可達0.2%。4.彎管流量計適應性強,量程范圍寬  彎管流量計在高溫、高壓、沖擊、振動、潮濕、粉塵等惡劣環境條件下,優于孔板流量計,震動和沖擊對彎管流量傳感器的正常工作幾乎沒有影響,高溫、高壓對彎管流量計來說只要采用與工藝管道相同的材質,就可以解決。  彎管流量傳感器的幾何尺寸幾乎沒有限制,管徑的大小從幾十毫米到2n以上,只要彎管的彎徑比符合規定要求,都可以做為傳感器進行流量測量。  彎管流量計的設計特點最適合在高溫、高壓狀態下(高溫蒸汽、高溫水)的流量計量,可降低能源損耗,降低壓力損失,提高供熱效率。彎管流量計的量程比可達10: 1,孔板流量計的量程比一般為35: 1.5.彎管流量傳感器的耐磨性好  因彎管流量傳感器的特殊結構,內部沒有任何節流件和插入件,固彎管流量傳感器幾乎不存在磨損,是保證彎管流量計長期運行精度不變的重要條件。孔板流量計入口邊緣尖銳度對磨損十分敏感,只要有微量的磨損,就會直接影響到測量精度,在氣體的長期高度沖刷下,也會使孔板開孔直角入口的邊緣很快鈍化,使測量精度系統發生變化造成誤差。6.彎管流量計安裝方便,維護量小  彎管流量計具有良好的耐磨性,長期運行的穩定性和可在線進行清污等特點,可采用直接焊接的方法進行安裝,避免了流量測量裝置現場跑、冒、滴、漏,令人頭痛的問題,降低了安裝費用。  由于彎管流量計一次測量件長期運行無磨損件,大大降低了維護費用,幾乎是免維護,一般可達到被測氣體管道的使用壽命。  孔板流量計的插入件和節流件容易堵塞,附著臟物,影響測量準確性。為保證孔板流量計的測量精度,必須經常進行拆除檢查清污,這樣頻繁的拆裝、檢查、清污維修,在連續作業的冶金企業難以做到,特別是對在較大管道上的孔板流量計就更難以做到,可見在工業煤氣計量中具有多種不確定因素影響測量誤差。7.彎管流量計不易凍管  孔板流量計的結構、工作原理達到的測量精度,節流件起到了決定性的作用。節流件對氣體在管道的流動具有非常大的阻力,一般只能利用輸氣管道.截面的1/3,大量潮濕含水的氣體在節流件截面上形成了大量的水珠,遇冷后結霜、結凍堵管。為解決煤氣供應的凍管問題,必須給每套孔板加裝保溫伴.熱裝置,來保證新疆地區5個月的冬季運行。表2為孔板流量計運行費用。  彎管流量計由于特殊結構和安裝的多樣性(水平轉水平,水平轉垂直向下,垂直向下轉水平,垂直直管,水平直管等安裝方式,見圖3),可以有效防止煤氣計量中凍管的發生,節省熱能源和運行費用。電磁流量計等節點設備和站內PC機間的通信采用異步串行通訊控制規程,并采用地址位喚醒握手協議.因此在協議中規定了傳地址和傳數據兩種不同的幀格式,如圖4.4所示.地址幀和數據幀都有11位,其中第l位和最后l位相同,分別為起始位和停止位,緊接起始位的是8位數據位,第9位為標志位,用來區分所發送/接受的幀信息是地址幀還是數據幀.第9位為1時,表示PC機發送/接受的是“地址幀":第9位為0時,表示主機發送/接受的是"數據幀".命令幀與校驗和的發送格式與數據幀相同,因此可由數據幀演化得到.vse流量計德國VSEVHM01-1流量計中國分公司1.只要滿足流量計的使用條件(包括.流體的流動特性.介質特性.操作過程及流量范圍)與檢定時相一致,便會得到與流量計檢定精度等量的使用精度。這就要求流量計的使用與檢定的流體的流動特性(流量計進口的速度分布)相同;流體的物理性質(密度等)也相同;檢定過程相同,并且在流量計的檢定流量范圍內使用儀表常數,那么在對介質密度壓力修正后。其使用精度便等同于其檢定精度。2.若流量計的使用與檢定條件滿足上述相同性原則,并且流量計在檢定流量范圍內定點使用時(使用其檢定流量下的儀表系數的平均值).則流量計的使用精度將會大大優于其檢定精度。3.若流量計在檢定該范圍內實際使用時,可用特性方程。即依據檢定中得到的各個流量下的平均儀表系數與流量Q的對應關系,借助最小二乘法原理,直線擬合得到K1=aq+b,用擬合后的K1代替儀表常數k,也可提高流量計的使用精度。熱式氣體質量流量計是流量計發展歷史的一次重大變革,使流量測量直接轉變為質量流量的測量.根據測量時熱式質量流量計所使用的流量測量元件的加工工藝的不同,常用的傳感器探頭可以分為:熱線熱式流量傳感器、熱敏電阻式傳感器、半導體集成電路式傳感器等.  熱式流量傳感器探頭對流體運動形態的影響較小,測量范圍大,響應性能也很好,但是,這種類型的傳感器探頭對機械強度要求較高、在傳感器材料選擇上受到較大的限制;同時,加熱溫度僅能達到400~500℃.此外,由于流體中的微小顆粒容易粘附到熱線上,抗污染腐蝕能力較差,易損壞使熱線的特性發生不穩定性變化,熱線一致性差,難以進行批量生產.  半導體式傳感器探頭是以單晶硅為基體,使用硅微機械加工而成的微橋結構.半導體式傳感器探頭多用于0~25mL/min 的小流量氣體的測量,在本課題中所需要測量的流量范圍較大,不能滿足使用要求.圖2-2是典型的半導體式傳感器探頭結構.  熱電阻式傳感器主要有兩個探頭:一個流量探頭(Rp),一個溫度探頭(Rtc).目前,市場上所使用的大部分熱式氣體質量流量計傳感器探頭主要是基準鉑電阻.工作的時候,兩個探頭以一定的機械結構固定于管道中,可以通過熱源探頭上電壓信號量或者加熱功率的改變來衡量流量的變化.工作中要求兩個傳感器探頭對流量的響應盡可能的快,且要保證散熱同步,傳感器探頭的靈敏度最高,這為傳感器探頭的設計增添了一定的難度.  如圖2-3鉑電阻的典型結構所示,鉑電阻在在管道內與流體進行熱交換的過程中,鉑電阻的表面和內部鉑絲之間存在熱阻,阻礙熱量的交換.因此,必須從鉑電阻元件的選擇和傳感器結構設計兩方面進行設計,盡量減小鉑電阻內部和表面的熱阻.如果熱阻較大,熱敏電阻表面和內部就會存在很高的溫度差高,出現流量探頭和溫度探頭已經達到恒定溫差的假象,會嚴重影響控制電路正常工作,使測量的結果與管道流量的實際狀況出現較大偏差,所以減小探頭的熱阻是設計熱電阻式傳感器的關鍵.流量計選型時應考慮很多因素,如儀表性能流體特性、安裝要求環境條件以及價格因素等。其中對計量對象即燃氣的確切了解非常重要,這往往需要選型設計人員和計量管理人員進行深入細致的調查。(1)流量計性能方面:精確度.重復性.線性度、范圍度、壓力損失、上下限流量、信號傳輸特性.響應時間等;(2)流體特性方面:流體壓力、溫度、密度、粘度、潤滑性.化學性質磨蝕、腐蝕、結垢、臟污、氣體壓縮系數、等熵指數比熱容聲速、混相流、脈動流等;(3)安裝條件方面:管道布置方向、流動方向、流量計上下游直管段長度、管徑、維護空間、管道振動、接地、電源輔助設備(過濾、排污)等;(4)環境條件方面:環境溫度、濕度、安全性、電磁干擾、防爆等;(5)經濟因素方面:購置費、安裝費、維修費、校驗費.運行費(能耗)、使用期限、備品備件等。計量管路流量量程變化是實際使用中經常遇到的情況, 特別是直接對沒有儲氣設備用戶供氣的計量更是如此。我國天然氣、煤氣的大部分消耗是供給城市作民用燃氣的,一般日負荷的變化都比較大,流量的量程變化也就較大。常用孔板流量計的量程比一般為3:1,對于大量程比的場合,一般采用以下三種方法解決。(1)將大流量分段多路并聯組合進行測量.在流量量程變化較大的場合,往往采用不同管徑的計算管道并聯組合,通過計量管路的組合切換來適應流量的變化;這是目前較為常用的方法。(2)更換孔板片改變值進行測量.在不改變標準孔板節流裝置和差壓計的情況下,通過更換不同開孔直徑的孔板,改變孔徑比的方法來實現流量測量。適用于較長時間的季節性流量較大幅度改變或供氣量的突然變化致使差壓計超出規定使用范圍的情況。(3)用一臺孔板流量計并聯不同量程差壓計進行測量.采用同一臺孔板流量計的一次裝置,并聯兩臺或兩臺以上不同量程的差壓計進行切換測量。利用電磁感應原理,電磁流量計一般被用來測量流過管道中導電流體的流量。不管流體的性質如何,只要其具有微弱的導電性(電導率大于8X10-5Ss/m)即可進行測量。通常,油田三采注入的聚合物混合液的導電性能良好,符合這種測量條件。   如圖1所示,根據電磁感應原理,當導電流體,在磁場強度為B的磁場中以速度V運動時,切割磁力線而產生電場E關系為   則在線形長度為L的a和b兩點之間產生感應電動勢Ɛab   a、b兩接收電極之間的距離L為已知常數,B為已知的磁場強度。故εab是V的單調函數,Ɛab隨V變化而變化。而瞬時流量g等于流速V與導管截面積S(常數)的乘積,因此有 式中K一儀器常數,   只要通過電磁流量計電路測得Ɛab,即可得到對應的流量Q。孔板流量計的主要部件高級孔板閥(采用高級型閥式孔板節流裝置),主要用于差壓式流量計的信號的產生和傳輸,可實現在線更換孔板,不影響輸送介質,無附加管路;裝置內有孔板安裝定位機構,標定準確度等級為0.5級;該裝置設有上、下兩個密封腔,以及滑閥部件,無旁設附加管線,裝置上、下腔間的密封件采用全硬密封結構,閥板和閥座采用22Cr堆焊硬質合金,設有注入密封脂輔助結構,可以防止閥座、閥板密封面上污物的沉淀;采用法蘭取壓標準孔板作為流量檢測元件。  孔板流量測量系統一般由節流裝置(標準孔板)、差壓變送器及數據處理器(開方積算器或計算機)組成。孔板流量計是將標準孔板與多參數差壓變送器(或差壓變送器、溫度變送器及壓力變送器)配套組成的高量程比差壓流量裝置,它可測量氣體、蒸汽、液體及引的流量,廣泛應用于石油、化工、冶金、電力、供熱供水等領域的過程控制和測量。節流裝置又稱為差壓式流量計,是由一次檢測件(節流件)和二次裝置(差壓變送器和流量顯示儀)組成廣泛應用于氣體.蒸汽和液體的流量測量.具有結構簡單,維修方便,性能穩定。德國VSEVHM01-1流量計中國分公司熱式氣體質量流量計是流量計發展歷史的一次重大變革,使流量測量直接轉變為質量流量的測量.根據測量時熱式質量流量計所使用的流量測量元件的加工工藝的不同,常用的傳感器探頭可以分為:熱線熱式流量傳感器、熱敏電阻式傳感器、半導體集成電路式傳感器等.  熱式流量傳感器探頭對流體運動形態的影響較小,測量范圍大,響應性能也很好,但是,這種類型的傳感器探頭對機械強度要求較高、在傳感器材料選擇上受到較大的限制;同時,加熱溫度僅能達到400~500℃.此外,由于流體中的微小顆粒容易粘附到熱線上,抗污染腐蝕能力較差,易損壞使熱線的特性發生不穩定性變化,熱線一致性差,難以進行批量生產.  半導體式傳感器探頭是以單晶硅為基體,使用硅微機械加工而成的微橋結構.半導體式傳感器探頭多用于0~25mL/min 的小流量氣體的測量,在本課題中所需要測量的流量范圍較大,不能滿足使用要求.圖2-2是典型的半導體式傳感器探頭結構.  熱電阻式傳感器主要有兩個探頭:一個流量探頭(Rp),一個溫度探頭(Rtc).目前,市場上所使用的大部分熱式氣體質量流量計傳感器探頭主要是基準鉑電阻.工作的時候,兩個探頭以一定的機械結構固定于管道中,可以通過熱源探頭上電壓信號量或者加熱功率的改變來衡量流量的變化.工作中要求兩個傳感器探頭對流量的響應盡可能的快,且要保證散熱同步,傳感器探頭的靈敏度最高,這為傳感器探頭的設計增添了一定的難度.  如圖2-3鉑電阻的典型結構所示,鉑電阻在在管道內與流體進行熱交換的過程中,鉑電阻的表面和內部鉑絲之間存在熱阻,阻礙熱量的交換.因此,必須從鉑電阻元件的選擇和傳感器結構設計兩方面進行設計,盡量減小鉑電阻內部和表面的熱阻.如果熱阻較大,熱敏電阻表面和內部就會存在很高的溫度差高,出現流量探頭和溫度探頭已經達到恒定溫差的假象,會嚴重影響控制電路正常工作,使測量的結果與管道流量的實際狀況出現較大偏差,所以減小探頭的熱阻是設計熱電阻式傳感器的關鍵.1、根據工藝設計資料和實際情況確認使用流量范圍,在計算基礎上確定流量計的口徑。若渦街流量計選型過大,管道內介質的流速低于流量計工作的下限值,就會產生小流量時輸出信號不穩定,大流量時輸出信號穩定。2、流量計附近有大功率的電機或強電場時,容易引起干擾信號,有可能管道內無介質流通,但僅表有流量顯示。動力線同流量計信號輸出線并排走向靠近時,有可能使流量計輸出信號偏小。管道內有正常流量,但傳感器輸出頻率偏小很多。33流量計應單獨接地,若接地不良,或管道振動.大,而引入干擾信號就會產生管道內無流量,但傳感器有輸出信號。3、流量計應單獨接地,若接地不良,或管道振動.大,而引入干擾信號就會產生管道內無流量,但傳感器有輸出信號。4、流量計調節閥門應裝在流量計下游,若閥門裝在流量計上游,在小流量時產生射流,會引起流量值的偏差和穩定性。5、介質溫度小于150℃時選一體型,高于150℃時或環境溫度、溫度都比較高時,應選用分體型。6、渦街流量計投用前,對管道應進行清洗,以沖掉管道內的鐵銹、焊渣等雜物,防止擊壞儀表。為了提高孔板流量計的準確度,可采取以下措施。1.標準孔板節流裝置的制造與安裝  利用標準孔板流量計測量天然氣流量必須嚴格按照SY/T6143-2004標準規定的各項技術指標,對標準孔板節流裝置進行設計、加工制造、檢驗、安裝和使用。特別是孔板直角入口邊緣尖子度和測量管內壁粗糙度的加工和檢驗;孔板前后直管段長度的保證,直管段圓度、臺階以及孔板與測量管同軸度的保證。另外,開發統一的標準孔板流量計的設計軟件,可提高節流裝置設計和儀表選型的技術水平。2.采用可換孔板裝置與定值節流裝置  可換孔板節流裝置是一種新型節流裝置,節流元件精確地安裝在固定的座體內(座體通過法蘭與管道連接),在不拆動管道或不停止流體輸送的情況下,可方便地提升孔板,進行檢查、清洗或更換,從而保證了計量準確度。采用液壓升降的裝置,孔板提升輕便,特別適用于大口徑孔板。這種節流裝置還配有清洗室和清洗機構,為解決污垢介質,特別是單井天然氣的準確計量提供了有效手段。  定值節流裝置改變了現有節流裝置根據計算結果加工其孔徑的方法,對每種通徑測量管道配以有限數量的節流件,孔徑系列按優先數系選用,每種通徑配35種不同孔徑比β值的孔板。目前節流裝置設計猶如量體裁衣,定值節流裝置則變成成衣選用,采用定值節流裝置有利于產品批量生產,降低生產成本,方便選用和使用,便于監督生產。可換孔板節流裝置和定值孔板相配套,將改變傳統的生產方式,實現了節流裝置產品系列化、通用化和標準化,有利于提高標準孔板裝置計量的準確度。  標準孔板存在的缺點是入口直角銳利度易在流體沖刷下發生鈍化。據估計,鈍化嚴重的可能使流出系數偏移1%~2%,鈍化后其流出系數較為穩定,這在流量計算中給孔板入口直角銳利度的精確修正帶來很大的困難。標準噴嘴的流出系數是穩定的,另外,在同樣流量和相同β值時噴嘴的壓力損失只有孔板的30%。影響標準噴嘴推廣使用的主要原因是噴嘴制造成本高,在標準中噴嘴的流出系數不確定度較大(約2%)。采用定值節流件,專用加工設備實現批量生產,降低生產成本,而個別校準則可得到高精確度的流出系數,在天然氣流量測量中用噴嘴代替孔板,其優點是明顯的。3.應用合理的流量積算方案  根據天然氣計量工況條件和用戶對計量精度的要求,應采用對壓力、溫度和天然氣組分變化對流量自動部分補償或全補償的積算方案,計量系統測量儀表配備和精度的選用應符合GB/T18603-2001妖然氣計量系統技術要求》。用智能差壓變送器,壓力變送器、溫度變送器和流量計算機組成在線檢測系統,使溫度和壓力變化得到補償,可以提高測量準確度,降低流態脈動(或波動)引起的流量測量附加誤差。孔板流量計量程比一般為1~3,而實際測量天然氣流量變化有時會超過這個范圍。在這種情況下,其測量準確度顯著下降,如果采用定值節流裝置,寬量程智能差壓變送器與流量計算機配套使用,可方便地擴展流量量程或遷移量程,進而實現傳統孔板流量計的智能化。渦輪流量計作為速度式儀表,以動量矩守恒為基礎,渦輪流量計基本力矩平衡方程為[1]: 式中 Tb一軸與軸承的粘性摩擦阻力矩(流動產生的力矩); Td一渦輪流量計轉動的驅動力矩; Th一輪轂表面的粘性阻力矩; Tm一磁電阻力矩和軸與軸承的機械摩擦阻力矩之和; T1一葉片頂端與傳感器外殼的粘性摩擦阻力矩; Tw一輪轂端面粘性摩擦阻力矩; J一渦輪的轉動慣量; ɷ-渦輪轉動的角速度。   當流速較低時,渦輪流量計處于靜止狀態,此時角速度ɷ非常低,接近于0,Tb和Tw也可以忽略不計。在這種情況下,式(1)可以簡化為:   由式(2)可以看出提高驅動力矩是降低渦輪流量計啟動排量的一-條捷徑。如圖1所示,傳統渦輪流量計入口端是直管段和軸向導流片,流體流經渦輪葉片之前只有軸向速度,對渦輪的驅動力矩只是對渦輪葉片作用力的徑向分力產生的力矩。因為渦輪葉片螺旋角為45°,如果將導流片改為螺旋角為-45°的螺旋導流片(圖2),當流體進入導流片時會產生旋轉,方向與渦輪葉片正交,使得流體在軸向流動速度不變的基礎上增加了徑向的旋轉運動,流體的旋轉方向與渦輪葉片的轉動方向一致,在相同流量條件下,增加了流體對渦輪葉片的驅動力,實現降低啟動排量和提高分辨率的目的,整體結構如圖3所示。

您如果需要德國VSEVHM01-1流量計中國分公司的產品,請點擊右側的聯系方式聯系我們,期待您的來電

責任編輯:融恩備件之家