德國VSEVTR1025流量計參數資料同時我們還經營: 電磁流量計供電電壓問題是最主要的問題,也是此次儀表更換的最大困難。電磁流量計A是DC24V供電回路,兩線制;電磁流量計B是AC220V供電,四線制。將B表安裝在現場就意味現場要接一條AC220V的供電線,電纜設計之初肯定留有一定的余量(參照SH30822019石油化工儀表供電設計規范余量要求)。但是AC220V供電設備在現場并不是很多,想找到一根備用的AC220V電源線或許不是那么容易。 經現場核實電磁流量計A的安裝位置附近并沒有AC220V供電設備,距離太遠的設備如果現場重新配管施工AC220V電纜線路,因涉及動火作業或者挖掘作業,在投用裝置里面有很大的風險,而且工期太久。所以AC220V電源通過備用電纜的想法走不通。進一步現場核查發現,電磁流量計A非直拉電纜,中間有接線箱,接線箱內有多部儀表通過一根16P本安電纜接至中控室,該16P本安電纜有6P備用線,其余10P電纜所接儀表為電磁流量計A和3臺液位開關、6臺閥位回訊。現考慮通過這根16P的電纜中的1P走AC220V電源。接線箱到儀表端重新敷設一根臨時電源線約15m,16P電纜到現場機柜間,將AC220V的1P備用線從端子柜通過一對端子排重新引出,加接電源線接至電源柜。該方案可行性分析如下: 1)16P本安電纜中液位開關信號、閥位回訊信號都是通斷的開關信號,抗干擾能力強。電磁流量計B最大功率為75W,電流不大,且AC220V的電壓波形好,比較穩定,對DC24V負載造成串擾的影響考慮可以接受。 2)AC220V電源信號走原本安電纜路徑.是不符合規范的。綜合客觀實際要求,只能最大限度地滿足規范又要考慮現實情況。根據HG-T20512-2014儀表配管配線設計規范中7.1.3(見表3)和7.1.5(見表4)要求,可以知道儀表信號電纜與電力電纜平行敷設最小間距都是50mm。此處是該次故障處理沒辦法克服只能容缺的地方。 3)機柜間電纜布線,因是在投用盤柜施工,同一柜子儀表在線的同時進行布線接線,施工安全尤為重要。考慮采取充足準備,提前加工,盡量減少盤柜內動作,由有經驗的接線員接線,禁止攜帶對講機進入機柜間等措施。確保機柜間電纜布線接線安全。 綜合分析,該方案的可行性可以接受。
德國VSEVTR1025流量計參數資料1.空間電磁波干擾及改進 電磁流量計用于測量實踐的過程中,轉換器與傳感器間如果存在較長的電纜,同時周邊有較強電磁干擾的情況存在,此時由于電纜的存在,干擾信號會被引入進去,最終會有共模干擾現象形成,導致流量計發生非線性、顯著失真或大幅度晃動等諸多情況,測量的準確性也會因此大打折扣.面對此類誤差引發的原因來看,可根據下述措施進行解決:(1)在電磁流量計安裝中,需要深入分析周邊環境,保證電磁流量計原理強磁場.(2)盡量將電纜長度控制在適宜范圍內,并落實相關屏蔽措施,如將電纜傳入接地鋼管中,避免電源線與電纜傳入同一根管.(3)選擇與要求相符合的屏蔽電纜,同樣能將電磁波構成的干擾有效降低.2.連接電纜問題及改進 電磁流量計是通過特定電纜、轉換器和傳感器組成的系統,因此電纜長度、屏蔽層數、導體橫截面積、絕緣情況及分布電容等都會對其測量結果構成影響,甚至還會對電磁流量計的正常運行產生干擾.所以,在安裝電磁流量計時不但需要參照導體橫截面積、屏蔽層數、待測液體電導率及分布電容等確定電纜長度,同時也要將電纜中間接頭的情況規避,并妥善處理末端,保障能夠實現良好連接.此外,也要保障所用電纜符合標準要求.3.測量管內存在著層及改進 以電磁流量計應用對象為根據,其多以測量非清潔流體為主,倘若實際測量中有一定量沉淀物等物質存在于非清潔流體內部,電磁流量計的正常使用及測量也必然會遭受影響,如污染電磁流量計管道、電極表面,最終引發測量誤差.面對此類誤差引發原因,相關人員在日常工作中應當做好電磁流量計定期清洗工作,同時適當將流速提升.此外,在襯里材料的選擇中,可選擇聚四氯乙烯.4.電極選擇、液體流速問題及改進 電磁流量計實際應用中,其電極和內部材料會直接接觸待測液體,所以在選擇電極和襯里材料時,都應當以待測液體為根據合理進行.結合待測液體性質完成襯里材料特性的確定,并在實際測量中圍繞測量溫度展開嚴格控制,避免由于襯里材料選擇不合理或溫度控制力度不足而導致襯里材料受磨損或變形等情況,進而導致附著速度加快、增大測量誤差發生率.針對此類情況,在應用電磁流量計時,在突出襯里材料選擇針對性的同時,也需要合理選擇電極,并妥善控制液體流速,保障處于合理范圍.5.測量液體呈現不對稱狀態及改進 應用電磁流量計測量相關液體的流量時,待測液體如果有不對稱狀態出現,必然會引起測量誤差的情況.液體非對稱狀態通常在單一的漩渦流或沿管線軸線的直線流等兩種流動組合方面得到表現.該情況下,管道截面的積分為液體體積流量.上游直管段如果存在不足,一般情況下可結合流量調節器調節流量,控制上下游一定范圍內流量計內徑與管道內徑之間具備相同的數值,確保上游直管段充足.6.電極與勵磁線圈對稱性問題及改進 在加工制造電磁流量計磁力線圈及電極時,有著嚴格對稱的要求.倘若有不對稱的情況出現,必然會引起不對稱偏差,進而對測量結果構成影響,最終也就會有測量誤差的情況出現.同時,在安裝電磁流量計時,也嚴格要求了安裝地點的振動,如一體型電磁流量計的安裝,需要在振動小的場所內,如果振動超出了標準就會有誤差出現在測量中,甚至還會對儀表的正常工作構成影響.所以,相關人員在實際安裝前,需要對待安裝位置振動展開嚴密測量,保障與安裝標準相符合.1.只要滿足流量計的使用條件(包括.流體的流動特性.介質特性.操作過程及流量范圍)與檢定時相一致,便會得到與流量計檢定精度等量的使用精度。這就要求流量計的使用與檢定的流體的流動特性(流量計進口的速度分布)相同;流體的物理性質(密度等)也相同;檢定過程相同,并且在流量計的檢定流量范圍內使用儀表常數,那么在對介質密度壓力修正后。其使用精度便等同于其檢定精度。2.若流量計的使用與檢定條件滿足上述相同性原則,并且流量計在檢定流量范圍內定點使用時(使用其檢定流量下的儀表系數的平均值).則流量計的使用精度將會大大優于其檢定精度。3.若流量計在檢定該范圍內實際使用時,可用特性方程。即依據檢定中得到的各個流量下的平均儀表系數與流量Q的對應關系,借助最小二乘法原理,直線擬合得到K1=aq+b,用擬合后的K1代替儀表常數k,也可提高流量計的使用精度。卡裝式渦輪流量計高精確度,一般可達±1%R、±0.5%R,高精度型可達±0.2%R重復性好,短期重復性可達0.05%~0.2%,正是由于具有良好的重復性,如經常校準或在線校準可得到極高的精確度,在貿易結算中是優先選用的流量計輸出脈沖頻率信號,適于總量計量及與計算機連接,無零點漂移,抗干擾能力強可獲得很高的頻率信號(3-4kHz),信號分辨力強范圍度寬,中大口徑可達1:20,小口徑為1:10結構緊湊輕巧,安裝維護方便,流通能力大適用高壓測量,儀表表體上不必開孔,易制成高壓型儀表渦輪流量計傳感器類型多,可根據用戶特殊需要設計為各類型傳感器,例如低溫型、雙向型、井下型、混砂型等可制成插入型,適用于大口徑測量,壓力損失小,價格低,可不斷流取出,安裝維護方便德國VSEVTR1025流量計參數資料渦街流量計至少保證流量計前15倍管徑,流量計后5倍管徑。如流量計前有彎頭,縮進,擴大等干擾源,則需保證流量計前30–40倍的管徑,流量計后6倍管徑。流量計應安裝于調節閥,壓力或溫度傳感器的上游。 渦街流量計主要用于哪些介質流量測量:如氣體、液體、蒸氣等多種介質。利用在流體中設置三角柱型旋渦發生體,則從旋渦發生體兩側交替地產生有規則的旋渦,這種旋渦稱為卡門旋渦,旋渦列在旋渦發生體下游非對稱地排列。常見問題主要有指示長期不準;始終無指示;指示大范圍波動,無法讀數;指示不回零;小流量時無指示;大流量時指示還可以,小流量時指示不準;流量變化時指示變化跟不上;儀表K系數無法確定,多處資料均不一致。總結引起這些問題的主要原因,主要涉及到以下方面選型方面的問題。 渦街流量計技術指標的提高是行業發展的追求,如測量范圍,電阻從超導到1014Ω,溫度從接近絕對零度到1010℃。如測量準確度,時間測量從30萬年不差1秒提高到600萬年不差1秒。追求高穩定性和高可靠性隨著儀器儀表和測控系統應用領域的不斷擴大,可靠性技術在航天航空、電力、冶金、石油化工等大型工程和工業生產中起到維護正常工作的重要作用。 保障現場儀器儀表的測控系統正常工作的渦街流量計也要求高穩定性和高可靠性。因為新材料的出現和各種加工技術的發展,現代的可靠性按平均無故障時間與10年前相比提高了3倍。 渦街流量計熱敏檢測元件靈敏度高,適用于溫度(<350℃)和較低密度的氣體測量,但因熱敏電阻用玻璃封裝,較脆弱,敞易受流體中的污物、有害物質及顆粒物的影響,所以被測介質還應足清潔的液體或氣體。1.電磁流量計在漿液中的特別安裝要求 首先,要對電磁流量計的特別安裝要求進行分析,首先要了解此電磁流量計相對于其它一些流量計在特征方面有什么不同之處,電磁流量計的特點在于采用了法拉第的電磁感應定律,測量方法主要以直接測量的方式進行。并且,在測量結果上不受到流體密度、粘度、溫度以及壓力的影響,沒有阻流件與相應的壓力損失,同樣也不會在高流速的情況下發生一些氣體腐蝕的現象。不過,由于在實際的安裴過程中沒有采用科學的安裝方法以及嚴格安裝電磁流量計的特別安裝要求,部分電磁流量計極易在實際的運作中造成儀表測量誤差的出現,嚴重的還會造成儀表的損壞。在進行電磁流量計的安裝過程中,需要嚴格按照安裝流程進行操作,由于現場操作的復雜性,為了確保電磁流量計可以在運行效果上達到一個較好的操作水平,可以進行三臺以及電磁流量計的統一安裝操作,在氣化爐的頂部進行安裝,從而進一步增強測量效果,同時延長流量計的前直管段的使用方式,以便解決加壓泵在工作過程中造成的脈動影響。2.電磁流量計使用方法建議 在單機進行試車階段,需要嚴格安裝使用方式提示,禁止對電磁流量計進行送電。氣化爐在停車后,需要對電磁流量計先進行停電操作,然后再對其進行清洗,主要足清洗其中的管線,避免因電磁流量計內部的傳感器勵磁形成的磁場吸附了電極周圍的鐵銹而造成最終清洗效果的降弱。在正常的運行階段,如果發現電磁流量計發生-些波動或干擾現象的出現,需要對其原因進行分析,主要的原因可以概括為如下幾個方面:第一為泵引發的波動因素,主要因為煤漿泵在某個工作時間內出現了異常工作效果,整體的流量值發生變化的可能性不大,但由于流量脈動的變化波動量也隨之發生了較大的變化。第二為煤漿引起的波動,前文提到,煤漿屬于混合物,其中不僅含有煤水化合物,還包括一些金屬顆粒,隨著這些金屬顆粒含量的增多,尤其是電極周圍堆積的金屬顆粒隨著電極壓力的形成逐步增加,從而造成停車現象的出現。第三為電磁流量計輸出信號的尖脈沖千擾,因為煤漿含有的大顆粒金屬摩擦導致電極之間瞬間產生尖脈沖信號干擾,井且電磁流量計內部的傳感器受到溫度的影響,使得煤漿管線的沖洗難度不斷增加。3.電磁流量計的特殊加工 在進行電磁流量計的特殊加工過程中,要使用錳合金等特殊材質的加工方法進行防護沖刷磨損套的制作。對一些電磁流量計的碳化效果,電磁干擾效果的主要作用是指在防護沖刷效果的基礎.上,以電磁流量感應為防護基礎,以電極防護標準作為碳化防護效果的主要依據,根據電磁流量計加工的特性,在實際的應用效果上進行特殊加工。針對鐵磁性質的干擾,需要進行水煤漿磁過濾操作,在經濟條件允許的情況下可以采用不銹鋼的輸送管道,并定期對電磁流量計內部進行檢查與清理。針對電磁流量計的參數設定問題,不能按照最佳的安裝條件時測定的參數進行,也不能犧牲靈敏度彌補脈動流造成的波動,建議整體的阻止時間不應操作三十秒這一區間范圍。值得一"提的是,只有在進行防護檢修的過程中,才能最終確定相應的電磁流量參數,應當建c起統一的標準積極發揮其計量參數的特長與優勢。流量計中有一款叫做氣體渦輪流量計,對于不常用到的用戶來說肯定很陌生。如果您使用過此款流量計時一定會給它本身的優點所吸引。那么針對那些對于氣體渦輪流量計認識不是很深的用戶今天我們就來介紹一下關于氣體渦輪流量計的組成還有它的工作原理更重要的還有它的儀表系數的計算方法介紹: 氣體渦輪流量計是一種速度式流量計,是近些年來迅速發展起來的新型儀表,這種流量計具有精度高、壓力損失小、量程比大等優點,可測量多種氣體或液體的瞬時流量和流體總量,并可輸出0-10mA?DC或4-20mA?DC信號,與調節儀表配套控制流量。氣體渦輪流量計的組成 氣體渦輪流量計主要由渦輪流量變送器和指示積算儀組成[1]。渦輪流量變送器把流量信號轉換成電信號,由指示積算儀顯示被測介質的體積流量和流體總量。氣體渦輪流量計的工作原理 流體流經傳感器殼體,由于葉輪的葉片與流向有一定的角度,流體的沖力使葉片具有轉動力矩,克服摩擦力矩和流體阻力矩之后葉片旋轉,在力矩平衡后轉速穩定,在一定條件下,轉速與流速成正比,由于葉片具有導磁性,它處于信號檢測器(由永久磁鋼和線圈組成)的磁場中,旋轉的葉片切割磁力線,周期性地改變線圈地磁通量,從而使線圈兩端感應出電脈沖信號,此信號經過放大器的放大整形,形成有一定幅度的連續的矩形波,可遠傳至顯示儀表,顯示出流體的體積流量或總量。氣體渦輪流量計儀表系數的理論表達式 作用在渦輪上的力矩可分為以下幾個:流體通過渦輪時對葉片產生的切向推動力矩M1;流體沿渦輪表面流動時產生的粘滯摩擦力矩M2;軸承的摩擦力矩M3;磁電轉換器對渦輪產生的電磁反作用阻力矩M4。 由此可建立渦輪的運動微分方程:(1)式中:J為渦輪的轉動慣量;ω為渦輪的旋轉角速度;τ為時間。當流量恒定時,渦輪達到勻速轉動,所以M1=M2+M3+M4。推動力矩可表示為:M1=a1qv2-a2ωqv (2)式中:a1、a2為與渦輪傳感器結構和流體密度有關的系數;qv為流量,L/s。由于氣體渦輪流量計在量程范圍內屬于紊流工作區,固以下計算只考慮紊流時的情況。反作用力矩中的M2,在紊流時可近似表示為:M2= a3qv2 (3)通常M3和M4相對于M2比較小,但為了提高計算精度,這里根據文獻[3]推導出了它們的表達式:M3=a4ω2/3 (4)M4=a5ω3 (5)分別將式(2)、(3)、(4)、(5)帶入式(1)并經整理可得:qv2 - a6ωqv = a7ω2/3 + a8ω3 (6)式中:a6、a7、a8為經整理后的綜合系數。現代工業生產中使用智能電磁流量計的領域是越來越廣了,智能電磁流量計的測量效果和精度也隨著制造技術和工藝的不斷進步而不斷提高,電磁流量計的測量原理是基于法拉第電磁感應定律:導電液體在磁場中作切割磁力線運動時,導體中產生感應電勢,測量流量時,導電性液體以速度V流過垂直于流動方向的磁場,導電性液體的流動感應出一個與平均流速成正比的電壓,其感應電壓信號通過二個或二個以上與液體直接接觸的電極撿出,并通過電纜送至轉換器通過智能化處理,然后LCD顯示或轉換成標準信號4~20ma和0-1khz輸出。這樣,智能電磁流量計就能測出導電流體的流量了。 我們在電磁流量計選型時,有一個重要的選型參數,那就是儀表內的襯里材料的選擇,為什么電磁流量計要進行襯里,這是由智能電磁流量計測量的原理決定的。電磁流量計一般有一組線圈和兩個電極,線圈的作用是給流體加上一個電場,流動的導電液體相當于一個導體,根據法拉第電磁感應定律當導體切割磁力線時會相應產生一個與速度成正比的電動勢,電極的作用就是測量這個感應電動勢,所以測量管內只有電極是與導電液體相連的,其他部分是內襯,要保證絕緣,電磁流量計才能正常工作。如果有磁場的那段金屬管道也與液體相接觸,電磁流量計所測的導電液體和金屬管之間短路了,就會有導電,就會將電勢導走使電磁流量計無法測量電勢。所以智能電磁流量計的內部都是有襯里的。 并且也是基于這個原因,我們用電磁流量計只能來測量導電液體的流量,也就是說智能電磁流量計對于所測介質的電介常數有一個最低的要求,電導率低于閾值會產生測量誤差直致不能使用,超過閾值即使有變化也可以測量,示值誤差變化不大,通用型電磁流量計電介常數下限值的閾值在10-4~(5×10-1)S/CM之間,視型號而異。工業用水及其水溶液的電導率大于10-4s/cm,酸、堿、鹽液的電導率在10-4~10-1s/cm 使用不存在問題,低度蒸餾水為 10-5s/cm 也不存在問題。石油制品和有機溶劑電導率過低就不能使用智能電磁流量計。 從資料上查到有些純液電導率較低,認為不能使用,然而實際工作中會遇到因含有雜質而能使用的實例,雜質對增加電導率有利。對于水溶液,資料中的電導率是用純水配比在實驗室測得的,實際使用的水溶液可能用工業用水配比,電導率將比查得的更高,也有利于流量測量。 根據所測量的介質的不同,智能電磁流量計的襯里材料品種選擇也不盡相同,普通的水性介質,比如污水、離子水等與帶有腐蝕性的液體介質(酸堿鹽溶液)所用的襯里材料就不能一樣,包括用來測量的電極的選擇也有所不同,根據經驗,一般情況下選擇襯里材料的指導方法如下。1.普通橡膠,天然橡膠,軟橡膠,硬橡膠。 運行溫度60℃,其特點就是富有彈性并且擁有不錯的耐磨性能。一般用于城市供排水等領域,耐腐蝕性就相對較差。2.聚四氟乙烯,也叫PTFE,也叫F4。 比較常用的內襯材質之一,因為其化學性質穩定,所以一般用于衛生級液體或強腐蝕液體,如濃酸濃堿等。3.聚全氟乙丙烯,也叫F46。 此種材質與PTFE類似,但耐磨性能強于PTFE材質,同樣介質溫度最高可達100℃。4.聚氟合乙烯,也叫Fs。 與F4材質類似的特性但承受溫度稍差了一些,一般介質溫度不超過80℃,性價比高,成本較F4材質低。5.氯丁橡膠,也叫CR,也叫Neoprene。 其特點為耐磨性能好,且彈性非常出色,一般用于供排水、污水處理等領域。耐腐蝕性能稍差,不耐氧化是它的缺點。6.聚氨酯橡膠,又叫Polyurethane。 擁有極好的耐磨性能,但對于腐蝕性就顯得能力不足了,且電磁流量計溫度不得超過80℃,一般用于對耐磨要求比較高的工礦環境,如礦漿煤漿等介質的測量。7.陶瓷材質 陶瓷無疑是所有材質中最好的,絕對的高端產品,唯一缺點就是價格不接地氣,制作過程復雜,對工藝要求極高,售價超高。由于超聲波流量計傳感器的安裝位置,被測管路的狀態對測量精度有很大影響,因此請選擇滿足下列條件的場所。1.管道圓度好,內表面光滑,管壁均勻。2.上游側5D,下游側3D以上的直管段,注“D為管道內徑”。3.被測管路必須充滿液體。4.必須有足夠的空間易于傳感器的安裝與操作。5.在水平的被測管路,傳感器不應裝在管道的頂部和底部,并避開管道凹凸不平及有焊縫處。超聲波流量計傳感器的安裝1.在已定的安裝位置周圍比傳感器約大一倍的面積上,將管壁上的油漆、鐵銹、污垢等清除干凈,擦凈露出金屬應無凹凸不平。2.將緊固件安裝在管道上,用不銹鋼帶將其固定在管道上,不應松動。3.鋪設好電纜由電纜接入孔接到接線盒中的接線端子上。4.每個傳感器換能器正面,涂上一厚層耦合劑(黃油)后,將傳感器換能器面與管壁接觸,放置在緊固組件中,并用壓緊蓋板將傳感器壓緊,耦合劑應從傳感器四周的縫隙中擠出,形成一道密封條。緊固螺銓鈕緊,注意四個螺銓用力要均勻,不要使傳感器偏移。流量計準確度影響的實驗分析 1實驗要求 實驗用鐘罩式氣體流量計標定裝置標定DN50G65氣體渦輪流量計,其準確度等級為1.5級;最小流量為Qmls:10m'/h,最大流量為Qmax:100m³/h;流量計量程比為1;10;上游直管段要求:5D=50X5=250mm=25cm,'下游直管段要求:3D=50X3=150mm=15cm. 2實驗思路 實驗以在流量計前端安裝一對大小頭作為擾流件,在擾流件和流量計之間安裝不同長度的直管段。經過一定時間段的運行,確認標準裝置與流量計的流量偏差以及疣量計的重復性,以此分析擾流件對流量計準確度的影響。 3實臉分析 3.1在流量計.上游安裝40cm直管段,下游安裝19cm直管段實驗 流量計上游直管段長度大于5D(25cm),下游直管段長度大于3D(15cm),實驗安裝圖如圖1所示,示意圖如圖2所示。 實驗數據如表3所示。 從表3可以看出,擾流件安裝在距流量計上游端較遠時,其運行數據的流量偏差與重復性符合流量計的國家標準。 3.2在流量計上游安裝29.1cm直管段,下游安裝19cm直管段實驗 流量計上游直管段長度較大于5D(25cm),下游直管段長度大于3D(15cm),實驗安裝示意圖如圖3所示. 實驗數據如表4所示。從表4可以看出,擾流件安裝在距流t計上游端接近5D處時,其運行數據的流量偏差(qmin≤q≤qt部分)>3%,不滿足國家標準的要求,但其重復性符合流量計的國家標準。 3.3在流量計上游安裝19cm直管段,下游安裝40cm直管段實驗 流量計上游直管段長度小于5D(25cm),下游直管段長度大于3D(15cm),實驗安裝示意圖如圖4所示 從表5可以看出,找流件安裝在流量計上游端小于5D處時,其運行數據的流量偏差(qai≤q≤qt部分)>3%,不滿足國家標準的要求,但其重復性符合流量計的國家標準。
您如果需要德國VSEVTR1025流量計參數資料的產品,請點擊右側的聯系方式聯系我們,期待您的來電


